تطور النظرية الذرية
لقد نشأت فكرة تكوُّن كل شيء من أجزاء بسيطة صغيرة خلال القرن الخامس قبل الميلاد في نطاق الفلسفة الذرية. وقد قدم هذه الفلسفة الفيلسوف الإغريقي ليوسيبّوس. وقام تلميذه ديموقريطس بتطويرها بصورة أكمل. وأعطى ديموقريطس الجُسيم الأولي الاسم ذرة الذي يعني غير قابل للقطع. وقد تخيل الذرات كجسيمات صلبة صغيرة مركبة من نفس المادة، لكنها تختلف عن بعضها في الشكل والحجم. وقد أدخل العالم الإغريقي أبيقور في القرن الرابع قبل الميلاد أفكار ديموقريطس في فلسفته. وفي حوالي عام 50 ق.م. قدم الفيلسوف والشاعر الروماني لوكريشيس المباديء الأساسية للفلسفة الذرية في قصيدته: "عن طبيعة الأشياء". ★ تَصَفح: المذهب الذري.
وفي العصور الوسطى حدث تجاهل تام لفكرة الذرات. وقد نتج هذا التجاهل بسبب رفض أرسطو، وهو أحد فلاسفة الإغريق، لهذه الفكرة حيث سادت فيه نظرياته مجالات الفلسفة والعلم في العصور الوسطى. لكن فكرة كون الذرات هي وحدات البناء الأساسية لكل المواد عاشت وانتعشت في القرنين السادس عشر والسابع عشر الميلاديين نتيجة لاعتناق مؤسسي العلم الحديث، أمثال فرانسيس بيكون وإسحق نيوتن من إنجلترا، وكذلك جاليليو من إيطاليا، لها. ولكنهم لم يضيفوا شيئًا يُذكر إلى النظرية الذرية التي وصفها ديموقريطس.
ميلاد النظرية الذرية الحديثة:
في عام 1750م خرج العالم رودجر بُسْكوفتْش اليوغوسلافي المولد بفكرة مؤداها أن ديموقريطس ربما يكون قد أخطأ بتصوره أن الذرة غير قابلة للتفتت. واعتقد بُسْكوفتش أن الذرة تحتوي على أجزاء أصغر وهذه بدورها تحتوي أيضًا على أجزاء أصغر وأصغر وهكذا حتى وحدات البناء الأساسية للمادة. وشعر أن وحدات البناء هذه لابد أن تكون نقاطًا هندسية بلاحجم على الإطلاق. واليوم يعتنق أغلب علماء الذرة صورة حديثة لفكر بُسْكوفتش.
حدث تقدم سريع في تطوير النظرية الذرية عندما أصبحت الكيمياء علمًا دقيقًا خلال أواخر القرن الثامن عشر. فقد اكتشف علماء الكيمياء أنه من الممكن تجميع العناصر لتكوين مركَّبات، وذلك بنسب محدَّدة مبنية على كتلة أي من هذه العناصر. وتمكن العالم البريطاني جون دالتون في عام 1803م من تطوير نظرية ذرية تفسر هذا الاكتشاف. فقد اقترح دالتون أن كل عنصر يتكون من نوع خاص من الذرات وأن اختلاف خواص العناصر ينجم عن اختلاف ذراتها. وذهب إلى أبعد من ذلك فقال: إن ذرات كل عنصر متماثلة تمامًا في الحجم والشكل والكتلة.
وتبعًا لنظرية دالتون، فإن الذرات، عندما تتجمع لتكوِّن مركَّبًا معيَّنًا، تتجمع دائمًا وفق نسب عددية محدَّدة. وعلى هذا يصبح تركيب كتلة من مركب معين هو نفسه على الدوام.
الأوصاف الأولى للتركيب الذري:
في عام 1897م، اكتشف عالم الفيزياء البريطاني جوزيف طومسون أن الذرات قابلة للتفتت. وقد توصل إلى اكتشافه هذا عندما كان يدرس الأشعة التي تنتقل بين الألواح المعدنية في صمام مفرغ. وقرر أن هذه الأشعة تتكون من جُسيمات خفيفة الوزن سالبة الشحنة. وبهذا يكون قد اكتشف الإلكترونات. وتبين طومسون على الفور أن الإلكترونات لابد أن تكون جزءًا من الذرة. واقترح نموذجًا للذرة تنغمس فيه الإلكترونات سالبة الشحنة في كرة موجبة الشحنة. وبالرغم من أن وصف طومسون كان بعيدًا كل البعد عن الوصف الصحيح للذرة، فإن عمله شجَّع علماء آخرين على بحث هيكل الذرة.
في عام 1911م قدَّم عالم الفيزياء البريطاني إرنِسْت رَذَرْفورد نظريته عن تكوين الذرة. فقد أعلن رذرفورد، وهو أحد تلاميذ طومسون السابقين، أن كل وزن الذرة تقريبًا مركَّزٌ في نواة دقيقة الحجم، وأن هذه النواة محاطة بإلكترونات تنتقل بسرعات بالغة الكبر خلال المنطقة الخارجية للذرة.
وقد بنى رذرفورد نظريته على نتائج التجارب التي قام فيها بقذف شرائح رقيقة من الذهب بجسيمات ألفا. فقد نفذت أغلب الجُسيمات من الشرائح، مما بين أن ذرات الذهب لابد أن تكون مكونة أساسًا من فضاء فارغ. لكن بعض الجُسيمات ارتدت كما لو كانت قد اصطدمت بشيء صلب. واستخلص رذرفورد من ذلك أن هذه الجُسيمات المرتدة انعكست بفعل قوة عظيمة من النواة الصغيرة الثقيلة لذرة من ذرات الذهب.
ولم تبين نظرية رذرفورد كيفية ترتيب الإلكترونات في الذرات. وفي عام 1913م اقترح العالم الدنماركي نيلز بور، الذي كان قد سبق له العمل مع رذرفورد، وصفًا لذلك. افترض بور أن الإلكترونات تنتقل فقط في مجموعة محدَّدة من المدارات حول النواة. ولم يكن افتراض بور الأوَّلي هذا مناسبًا، ولكن كثيرًا من الأفكار خلف هذا الافتراض ثبتت صحتها.
وفي عام 1924م رأى العالم الفرنسي لوي دي بروجلي أن للإلكترونات خواص الموجات. وفي 1928م تم الحصول على وصف سليم لترتيب الإلكترونات بمساعدة علماء فيزياء آخرين وخصوصًا وولفجانج باولي وإيرفين شرودينجر النمساويين وماكس بورن وفرنر هيسينبرج الألمانيين.
دراسة النواة:
بالرغم من أن علماء الفيزياء (الطبيعة) فهموا حركة الإلكترونات بحلول عام 1928م، إلا أن النواة ظلت غامضة إلى حد كبير. وقد تم تشخيص البروتونات في عام 1902م. واعتقد رذرفورد في عام 1914م أن البروتونات لابد أن تكون جزءًا من النواة. وتبيَّن العلماء أن النواة لا يمكن أن تكون مكونة من بروتونات فقط. وفي 1932م اكتشف عالم الفيزياء البريطاني جيمس تشادْويك أن النواة تحتوي أيضًا على جُسيمات غير مشحونة سُمِّيت بالنيوترونات. كذلك طوّر العلماء في أوائل الثلاثينيات من القرن العشرين معجِّلات للجُسيمات قادرة على إنتاج طاقات عالية بدرجة كافية لدراسة النواة.
لم يتوقع رواد الفيزياء النووية أن يروا في وقت قصير تطبيقًا علمياً لما لديهم من معرفة. لكن الباحثين اكتشفوا في عام 1938م أن قذف نواة ذرة اليورانيوم بنيوترون يسبب انشطارها إلى جزءين وإطلاق طاقة. وأطلقوا على هذه العملية الانشطار النووي. وجاء هذا الاكتشاف قبل اندلاع الحرب العالمية الثانية في عام 1939م بشهور قليلة، واستُخدم الانشطار النووي في القنابل النووية التي ساعدت على وضع نهاية لهذه الحرب في عام 1945م.
وقد جعل تطوير الأسلحة النووية الحكومات تقف على أهمية تطوير الفيزياء النووية. نتيجة لهذا، رُصدت مبالغ طائلة من الأموال للأبحاث النووية بعد الحرب. كما كانت الاستخدامات السلمية للانشطار النووي محل اهتمام متزايد. ففي الخمسينيات من القرن العشرين، بدأ تشغيل أول محطة نووية لتوليد الطاقة الكهربائية بتحويل الطاقة الحرارية التي تنتج من الانشطار النووي للنظير يورانيوم 235.
لكن سباق التسلح كان في الواقع السبب الرئيسي وراء الاهتمام البالغ بالأبحاث النووية. ففي أوائل الخمسينيات من القرن العشرين، بدأ العلماء في تطوير القنبلة الهيدروجينية. وتختلف في فكرتها عن القنبلة الذرية، فهي تعتمد على اتحاد ذرات الهيدروجين. وعملية اتحاد الذرات هي الفاعلة في إنتاج الحرارة والضوء في الشمس والنجوم الأخرى. وهي عملية من الصعب التحكم فيها. ولو كان في استطاعة العلماء التحكم في عملية اتحاد الذرات لاستطاعوا إنتاج طاقة حرارية أرخص كثيرًا من تلك التي تنتج من الانشطار النووي نظرًا لتوفر غاز الهيدروجين.
وبعيدًا عن سباق التسلح، فإن الدراسة الأكاديمية للفيزياء النووية، وإنشاء معجِّلات الجسيمات متزايدة الحجم والطاقة أدَّت إلى زيادة معرفتنا بتفاصيل النواة.
وقد تبين العلماء أن البروتون والنيوترون لا يمكن أن يكونا مجرد جُسيمات بسيطة. ووجدوا أيضًا أن النيوترون غير خال من الشحنات الكهربائية. بل تبينوا أنه يحتوي على كميات متساوية من الشحنات الموجبة والسالبة. كما اكتشف الباحثون مئات من الجسيمات الجديدة متشابهة جدًا، وكذلك للبروتونات والنيوترونات مما قاد لفكرة أن كل الجسيمات النووية مكونة من تنظيمات مختلفة لقليل من الأجزاء الصغيرة.
اكتشافات حديثة:
بحلول عام 1964م، توصل الباحثون إلى قرائن تدل على ماهية الأجزاء الأساسية المكونة للبروتونات والنيوترونات والجُسيمات النووية الأخرى. فقد طرح عالما الفيزياء الأمريكيان موراي جل ـ مان وجورج زفايج نظرية تصف هذه الأجزاء. وسمَّى جل ـ مان هذه الأجزاء بجسيمات الكوارك. وبيَّن علماء الفيزياء في عام 1971م أن هذه الجسيمات أصغر كثيرًا من البروتونات والنيوترونات.
وقد قاد نجاح نظرية الكوارك إلى تقدم سريع في الفيزياء تحت الذرية. وظل صعبًا التوصل إلى وصف دقيق للقوة بين البروتونات والنيوترونات نظرًا لشدة تعقيد هذه الجُسيمات، ومع ذلك، فإن القوة التي تحتفظ بجسيمات الكوارك معًا أصبحت مفهومة تمامًا مما سيساعد علماء الفيزياء مستقبلاً في فهم القوة النووية. ويبقى السؤال ما إذا كانت جسيمات الكوارك هي وحدات البناء الأساسية النهائية للذرات. كثير من الأبحاث مخصص للإجابة عن هذا السؤال.
لقد نشأت فكرة تكوُّن كل شيء من أجزاء بسيطة صغيرة خلال القرن الخامس قبل الميلاد في نطاق الفلسفة الذرية. وقد قدم هذه الفلسفة الفيلسوف الإغريقي ليوسيبّوس. وقام تلميذه ديموقريطس بتطويرها بصورة أكمل. وأعطى ديموقريطس الجُسيم الأولي الاسم ذرة الذي يعني غير قابل للقطع. وقد تخيل الذرات كجسيمات صلبة صغيرة مركبة من نفس المادة، لكنها تختلف عن بعضها في الشكل والحجم. وقد أدخل العالم الإغريقي أبيقور في القرن الرابع قبل الميلاد أفكار ديموقريطس في فلسفته. وفي حوالي عام 50 ق.م. قدم الفيلسوف والشاعر الروماني لوكريشيس المباديء الأساسية للفلسفة الذرية في قصيدته: "عن طبيعة الأشياء". ★ تَصَفح: المذهب الذري.
وفي العصور الوسطى حدث تجاهل تام لفكرة الذرات. وقد نتج هذا التجاهل بسبب رفض أرسطو، وهو أحد فلاسفة الإغريق، لهذه الفكرة حيث سادت فيه نظرياته مجالات الفلسفة والعلم في العصور الوسطى. لكن فكرة كون الذرات هي وحدات البناء الأساسية لكل المواد عاشت وانتعشت في القرنين السادس عشر والسابع عشر الميلاديين نتيجة لاعتناق مؤسسي العلم الحديث، أمثال فرانسيس بيكون وإسحق نيوتن من إنجلترا، وكذلك جاليليو من إيطاليا، لها. ولكنهم لم يضيفوا شيئًا يُذكر إلى النظرية الذرية التي وصفها ديموقريطس.
|
||||||||||||
نماذج الذرة خلال القرن العشرين اقترح علماء الفيزياء نماذج متباينة لتكوين الذرة. وتبين الأشكال البيانية أدناه أهم ثلاثة من النماذج الأولى بالإضافة إلى النموذج الحديث. | ||||||||||||
|
||||||||||||
|
في عام 1750م خرج العالم رودجر بُسْكوفتْش اليوغوسلافي المولد بفكرة مؤداها أن ديموقريطس ربما يكون قد أخطأ بتصوره أن الذرة غير قابلة للتفتت. واعتقد بُسْكوفتش أن الذرة تحتوي على أجزاء أصغر وهذه بدورها تحتوي أيضًا على أجزاء أصغر وأصغر وهكذا حتى وحدات البناء الأساسية للمادة. وشعر أن وحدات البناء هذه لابد أن تكون نقاطًا هندسية بلاحجم على الإطلاق. واليوم يعتنق أغلب علماء الذرة صورة حديثة لفكر بُسْكوفتش.
حدث تقدم سريع في تطوير النظرية الذرية عندما أصبحت الكيمياء علمًا دقيقًا خلال أواخر القرن الثامن عشر. فقد اكتشف علماء الكيمياء أنه من الممكن تجميع العناصر لتكوين مركَّبات، وذلك بنسب محدَّدة مبنية على كتلة أي من هذه العناصر. وتمكن العالم البريطاني جون دالتون في عام 1803م من تطوير نظرية ذرية تفسر هذا الاكتشاف. فقد اقترح دالتون أن كل عنصر يتكون من نوع خاص من الذرات وأن اختلاف خواص العناصر ينجم عن اختلاف ذراتها. وذهب إلى أبعد من ذلك فقال: إن ذرات كل عنصر متماثلة تمامًا في الحجم والشكل والكتلة.
وتبعًا لنظرية دالتون، فإن الذرات، عندما تتجمع لتكوِّن مركَّبًا معيَّنًا، تتجمع دائمًا وفق نسب عددية محدَّدة. وعلى هذا يصبح تركيب كتلة من مركب معين هو نفسه على الدوام.
الأوصاف الأولى للتركيب الذري:
في عام 1897م، اكتشف عالم الفيزياء البريطاني جوزيف طومسون أن الذرات قابلة للتفتت. وقد توصل إلى اكتشافه هذا عندما كان يدرس الأشعة التي تنتقل بين الألواح المعدنية في صمام مفرغ. وقرر أن هذه الأشعة تتكون من جُسيمات خفيفة الوزن سالبة الشحنة. وبهذا يكون قد اكتشف الإلكترونات. وتبين طومسون على الفور أن الإلكترونات لابد أن تكون جزءًا من الذرة. واقترح نموذجًا للذرة تنغمس فيه الإلكترونات سالبة الشحنة في كرة موجبة الشحنة. وبالرغم من أن وصف طومسون كان بعيدًا كل البعد عن الوصف الصحيح للذرة، فإن عمله شجَّع علماء آخرين على بحث هيكل الذرة.
في عام 1911م قدَّم عالم الفيزياء البريطاني إرنِسْت رَذَرْفورد نظريته عن تكوين الذرة. فقد أعلن رذرفورد، وهو أحد تلاميذ طومسون السابقين، أن كل وزن الذرة تقريبًا مركَّزٌ في نواة دقيقة الحجم، وأن هذه النواة محاطة بإلكترونات تنتقل بسرعات بالغة الكبر خلال المنطقة الخارجية للذرة.
وقد بنى رذرفورد نظريته على نتائج التجارب التي قام فيها بقذف شرائح رقيقة من الذهب بجسيمات ألفا. فقد نفذت أغلب الجُسيمات من الشرائح، مما بين أن ذرات الذهب لابد أن تكون مكونة أساسًا من فضاء فارغ. لكن بعض الجُسيمات ارتدت كما لو كانت قد اصطدمت بشيء صلب. واستخلص رذرفورد من ذلك أن هذه الجُسيمات المرتدة انعكست بفعل قوة عظيمة من النواة الصغيرة الثقيلة لذرة من ذرات الذهب.
ولم تبين نظرية رذرفورد كيفية ترتيب الإلكترونات في الذرات. وفي عام 1913م اقترح العالم الدنماركي نيلز بور، الذي كان قد سبق له العمل مع رذرفورد، وصفًا لذلك. افترض بور أن الإلكترونات تنتقل فقط في مجموعة محدَّدة من المدارات حول النواة. ولم يكن افتراض بور الأوَّلي هذا مناسبًا، ولكن كثيرًا من الأفكار خلف هذا الافتراض ثبتت صحتها.
وفي عام 1924م رأى العالم الفرنسي لوي دي بروجلي أن للإلكترونات خواص الموجات. وفي 1928م تم الحصول على وصف سليم لترتيب الإلكترونات بمساعدة علماء فيزياء آخرين وخصوصًا وولفجانج باولي وإيرفين شرودينجر النمساويين وماكس بورن وفرنر هيسينبرج الألمانيين.
دراسة النواة:
بالرغم من أن علماء الفيزياء (الطبيعة) فهموا حركة الإلكترونات بحلول عام 1928م، إلا أن النواة ظلت غامضة إلى حد كبير. وقد تم تشخيص البروتونات في عام 1902م. واعتقد رذرفورد في عام 1914م أن البروتونات لابد أن تكون جزءًا من النواة. وتبيَّن العلماء أن النواة لا يمكن أن تكون مكونة من بروتونات فقط. وفي 1932م اكتشف عالم الفيزياء البريطاني جيمس تشادْويك أن النواة تحتوي أيضًا على جُسيمات غير مشحونة سُمِّيت بالنيوترونات. كذلك طوّر العلماء في أوائل الثلاثينيات من القرن العشرين معجِّلات للجُسيمات قادرة على إنتاج طاقات عالية بدرجة كافية لدراسة النواة.
لم يتوقع رواد الفيزياء النووية أن يروا في وقت قصير تطبيقًا علمياً لما لديهم من معرفة. لكن الباحثين اكتشفوا في عام 1938م أن قذف نواة ذرة اليورانيوم بنيوترون يسبب انشطارها إلى جزءين وإطلاق طاقة. وأطلقوا على هذه العملية الانشطار النووي. وجاء هذا الاكتشاف قبل اندلاع الحرب العالمية الثانية في عام 1939م بشهور قليلة، واستُخدم الانشطار النووي في القنابل النووية التي ساعدت على وضع نهاية لهذه الحرب في عام 1945م.
وقد جعل تطوير الأسلحة النووية الحكومات تقف على أهمية تطوير الفيزياء النووية. نتيجة لهذا، رُصدت مبالغ طائلة من الأموال للأبحاث النووية بعد الحرب. كما كانت الاستخدامات السلمية للانشطار النووي محل اهتمام متزايد. ففي الخمسينيات من القرن العشرين، بدأ تشغيل أول محطة نووية لتوليد الطاقة الكهربائية بتحويل الطاقة الحرارية التي تنتج من الانشطار النووي للنظير يورانيوم 235.
لكن سباق التسلح كان في الواقع السبب الرئيسي وراء الاهتمام البالغ بالأبحاث النووية. ففي أوائل الخمسينيات من القرن العشرين، بدأ العلماء في تطوير القنبلة الهيدروجينية. وتختلف في فكرتها عن القنبلة الذرية، فهي تعتمد على اتحاد ذرات الهيدروجين. وعملية اتحاد الذرات هي الفاعلة في إنتاج الحرارة والضوء في الشمس والنجوم الأخرى. وهي عملية من الصعب التحكم فيها. ولو كان في استطاعة العلماء التحكم في عملية اتحاد الذرات لاستطاعوا إنتاج طاقة حرارية أرخص كثيرًا من تلك التي تنتج من الانشطار النووي نظرًا لتوفر غاز الهيدروجين.
وبعيدًا عن سباق التسلح، فإن الدراسة الأكاديمية للفيزياء النووية، وإنشاء معجِّلات الجسيمات متزايدة الحجم والطاقة أدَّت إلى زيادة معرفتنا بتفاصيل النواة.
وقد تبين العلماء أن البروتون والنيوترون لا يمكن أن يكونا مجرد جُسيمات بسيطة. ووجدوا أيضًا أن النيوترون غير خال من الشحنات الكهربائية. بل تبينوا أنه يحتوي على كميات متساوية من الشحنات الموجبة والسالبة. كما اكتشف الباحثون مئات من الجسيمات الجديدة متشابهة جدًا، وكذلك للبروتونات والنيوترونات مما قاد لفكرة أن كل الجسيمات النووية مكونة من تنظيمات مختلفة لقليل من الأجزاء الصغيرة.
اكتشافات حديثة:
بحلول عام 1964م، توصل الباحثون إلى قرائن تدل على ماهية الأجزاء الأساسية المكونة للبروتونات والنيوترونات والجُسيمات النووية الأخرى. فقد طرح عالما الفيزياء الأمريكيان موراي جل ـ مان وجورج زفايج نظرية تصف هذه الأجزاء. وسمَّى جل ـ مان هذه الأجزاء بجسيمات الكوارك. وبيَّن علماء الفيزياء في عام 1971م أن هذه الجسيمات أصغر كثيرًا من البروتونات والنيوترونات.
وقد قاد نجاح نظرية الكوارك إلى تقدم سريع في الفيزياء تحت الذرية. وظل صعبًا التوصل إلى وصف دقيق للقوة بين البروتونات والنيوترونات نظرًا لشدة تعقيد هذه الجُسيمات، ومع ذلك، فإن القوة التي تحتفظ بجسيمات الكوارك معًا أصبحت مفهومة تمامًا مما سيساعد علماء الفيزياء مستقبلاً في فهم القوة النووية. ويبقى السؤال ما إذا كانت جسيمات الكوارك هي وحدات البناء الأساسية النهائية للذرات. كثير من الأبحاث مخصص للإجابة عن هذا السؤال.