غلاف مغنطيسي
Magnetosphere - Magnétosphère
الغلاف المغنطيسي
الغلاف المغنطيسي magnetosphère منطقة فضائية تحيط بالكرة الأرضية، وتقع بعد الغلاف الأيوني، بدءاً من 800 حتى 1000 كيلومتر، وتمتد إلى الحدود النهائية الفاصلة بين الفضاء الأرضي والفضاء ما بين الكواكب. تملأ الغلاف المغنطيسي بلازما ممدَّدة جداً، تتكون في أسفله من إلكترونات ونوى الهليوم الثقيلة، وتكاد تكون في قسمه العلوي مفككة كلياً إلى إلكترونات وبروتونات (نوى الهدروجين الخفيفة)، ويتحكم فيها الحقل المغنطيسي الأرضي تحكّماً وثيقاً. وعليه يجب عدّ الناقلية الكهربائية لهذه البلازما شبه لانهائية، مما يكسبها سلوكاً مغنطيسياً تحريكياً يجعلها تسمح لموجات آلفين Alfvén بالانتشار فيها بسرعات تراوح بين 30 و80 كيلومتراً/ثانية، وتضطر جسيماتها إلى الارتباط بخطوط الحقل (خطوط القوة) المغنطيسي وكأنها «مسمَّرة» بها. وهذه البلازما «باردة»، أي كثافة طاقتها الحركية (الترموديناميكية) ضعيفة ومنخفضة، على خلاف البلازما «الحارة» المتوافرة في الريح الشمسية، التي هي تدفق جسيمات مستمر من الشمس،سرعاتها عالية جداً تراوح بين 300 و800 كيلومتر/ثانية.
حدود الغلاف المغنطيسي
لم يعد مقبولاً ـ كما كان يُعتقد في السابق ـ أن يكون هذا الحقل ممتداً إلى اللانهاية، فإن ذلك لم يكن صحيحاً إلا بقدر صحة الاعتقاد بأن الفضاء بين الكواكب هو فضاء «خالٍ» في حالته العادية. إن إثبات الوجود الدائم للريح الشمسية، نحو عام 1950 من قِبَل الفيزيائي الفلكي لودفيغ فرانس بيندكت بيرمان Ludwig F.B. Biermann، أدى إلى قبول الوجود الدائم عام 1958 مع أوجين باركر Eugène N. Parker، «لتجويف» يحتفظ به الحقل المغنطيسي الأرضي، وكأنه محفور في البلازما التي تنقلها الريح الشمسية. وجدران هذا التجويف (الحد الخارجي للغلاف المغنطيسي) هي مقر التآثر (التفاعل المتبادل) الدائم بين هذه البلازما الشمسية والحقل المغنطيسي الأرضي؛ إذ يجبر هذا الحقل جسيمات البلازما على الالتفاف حول خطوط حقله المحيطية الخارجية، ولكن هذه الخطوط الخارجية، ومن ثمَّ معها خطوط الحقل الداخلية الأخرى جميعها، تبقى بقوة ذلك «محصورة» داخل هذا التجويف المتولِّد على هذا النحو.
حالة الغلاف المغنطيسي السكونية (أو «المستقرة») وبنيته الأساسية
الحدّ الخارجي للغلاف المغنطيسي (السطح الحدودي) يعبرّ عن التوازن الحاصل بين الضغوط على وجهيه وفق المعادلة:
وفي هذه العلاقة تعبر الحدود ρv2 (حيث يمثل ρ الكتلة الحجمية، وv سرعة الهيجان الحراري أو الانجرار) عن ضغوط (أو كثافات طاقة) مصدرها حركي أو حراري، بينما تعبر الحدود kB2 (حيث يمثل B التحريض أو الحقل المغنطيسي) عن ضغوط (أو كثافات طاقة) مصدرها مغنطيسي، وترمز القرينتان e وi إلى الوسطين الخارجي والداخلي على التوالي، أما k فهو معامل يتوقف على الواحدات المستخدمة. وإذا لم يؤخذ في الحسبان إلا الحدّ الأهم في طرفي المعادلة ـ الضغط الحركي الذي تمارسه البلازما الشمسية من الخارج، والضغط المغنطيسي الذي يمارسه الحقل المغنطيسي الأرضي من الداخل ـ تؤول العلاقة السابقة إلى الشكل المبسط:
الذي يعين الحدّ الخارجي للغلاف المغنطيسي. وينطبق هذا التفكير على جانب الشمس (أو جانب النهار)، فيشكل شبه نصف كرة كائنة على بعد نحو خمسة أضعاف قطر الأرض. أما في الجانب المضاد للشمس (أو جانب الليل) فالظاهرة في الواقع أكثر تعقيداً، إذ تنضاف إلى الأفعال السابقة انجرارات (باللزوجة المغنطيسية أو بالدوامات الخ…) تمت معرفتها بفضل قياسات ساتلية: استطالة كبيرة في الغلاف المغنطيسي الليلي، التي ربما تمتد إلى مئات عدة من قطر الأرض، أي إلى أبعد بكثير من المدار القمري الذي يمتد إلى 30 مرة من قطر الأرض، وهذا الذي يشكل الذيل المغنطيسي «المغلق» أو «المفتوح»، حسبما يُفترض أن خطوط الحقل تنغلق على ذاتها (الشكل 1ـ ب) أو أنها تذهب على العكس لتلتحم بخطوط الحقل المغنطيسي الضعيف الذي يُعلم الآن بوجوده في الفضاء بين الكواكب والذي تبلغ شدته 5γ تقريباً (γ = غاما = 10-5 غاوس).
شكل الحقل المغنطيسي
الحقل المغنطيسي الذي داخل الغلاف المغنطيسي المجاور للأرض يشبه كثيراً الحقل الذي تولده ثنائية مغنطيسية (قضيب مغنطيسي كبير) يميل محور تناظرها قليلاً على محور دوران الأرض، ويمتد إلى مسافات تبلغ بضعة أضعاف من قطر الأرض، سواء من جانب النهار أو من جانب الليل (الشكل 1ـ أ). وتنغلق خطوط الحقل المتقابلة عند سطح الأرض في مناطق تمتد من خط الاستواء وحتى المناطق الشفقية (غير المتضمنة). ولايظهر التمايز الأساسي بين الغلافين النهاري والليلي إلا في مسافات أكبر من هذه المسافات؛ ففي حالة الغلاف المغنطيسي النهاري يبقى الحقل الشبيه بحقل الثنائية المغنطيسية صالحاً أيضاً حتى حدوده، قرب الحدّ الخارجي للغلاف المغنطيسي، ولكن الأمر يختلف تماماً بالنسبة إلى الغلاف المغنطيسي الليلي الذي يصبح متناظراً حول محور اتجاه الشمس ـ أرض، المعامد تقريباً للمحور المغنطيسي للأرض. وتصبح خطوط الحقل الصادرة جميعها من المناطق الشفقية أو القطبية مسحوبة بشدة في الاتجاه المضاد للشمس، ولا تعود الخطوط المحيطية الخارجية تنغلق بين نصفي الكرة الأرضية الشمالي والجنوبي، وهكذا يتكون الذيل المغنطيسي، مع الخصوصيات الآتية:
1ـ وجود «منطقة حيادية»، هي منطقة مسطَّحة (بضع مئات من الكيلومترات) في اتجاه الجنوب ـ شمالي، تنسحب على طولها حقول مغنطيسية متوازية ومتعاكسة في الاتجاه، تحيط بحقول غير مستقرة، ضعيفة أو معدومة، تصادفها السواتل في مركز المنطقة.
2ـ الاحتفاظ بحقول مغنطيسية ذات شدات كبيرة نسبياً (من20 إلى 40 «غاما») تبقى موجودة داخل جسم الذيل ذاته، وإلى مسافات بعيدة تصل إلى عشرات بل مئات قطر الأرض.
الحدّ الخارجي للغلاف المغنطيسي
لقد ثبت وجود الحدّ الخارجي للغلاف المغنطيسي بجلاء باستخدام المقاييس المغنطيسية المحمولة على السواتل أو المسابر الفضائية، فَوُجِدَ أن الحقل المغنطيسي الذي تقيسه هذه الأجهزة يتغير بانتظام داخل الغلاف المغنطيسي، وفجأة بعد مسافة معينة تبدأ فيه التغيرات العشوائية مع هبوط في الشدة. ويمكن فهم تشكل هذا الحدّ الواضح في جانب الشمس على النحو الآتي: لنفترض أن مستوياً ناقلاً ضخماً يقترب من الأرض، وعندما يقطع هذا المستوى خطوط حقل المجال المغنطيسي الأرضي تتولد فيه ـ حسب قوانين الكهرمغنطيسية ـ تيارات تحريضية تخضع لقوى لابلاس تعوق تغير حركة هذا المستوي، وتكون شدة هذه القوى عظمى في جوار المستقيم أرض ـ شمس، فإذا كان هذا المستوي قابلاً للتشوه، يتغير شكله، فيتحدب عن هذا المستقيم أرض ـ شمس، ويؤدي إلى الشكل (2). وليس هذا المستوي الافتراضي سوى السطح الجبهي للريح الشمسية المؤلَّفة من الجسيمات المشحونة الصادرة عن الشمس.
موجة الصدم
لما كانت سرعة الريح الشمسية عالية جداً، من رتبة 300 إلى 800 كيلومتر/ثانية، وهي أعلى بنحو عشر مرات من سرعة أمواج آلفين؛ فإن هذه الأمواج تؤدي في هذا الوسط المتأين دور الموجات الصوتية المنتشرة في الهواء الذي يتحرك فيه جسم بسرعات فوق صوتية فتنشأ حادثة جدار الصوت بقوة موجة الصدم، وهنا تقوم الريح الشمسية مقام المتحرك بسرعات «فوق صوتية» بالنسبة إلى موجات آلفين، مما يؤدي إلى تشكل موجة الصدم أمام الحدّ الخارجي للغلاف المغنطيسي على مدى يبلغ عدة مرات من قطر الأرض، وتسمى المنطقة المحصورة بين موجة الصدم والحدّ الخارجي للغلاف المغنطيسي بالغمد المغنطيسي، وتكون مملوءة بالبلازما القادمة من الريح الشمسية.
إن عدم الاستقرار الذي يعزى إلى الحقول المتوازية والمتعاكسة في الاتجاه التي تفصل بينها ثخانات صغيرة من البلازما، قد دعا إلى التفكير بإمكان عودة الاتصال بين خطوط الحقل المتقابلة، وعندئذ تتساقط الطاقة المتحررة بشكل موجات مغنطيسية تحريكية و«انهيارات» من البلازما، على المناطق المنخفضة من الغلافين المغنطيسي والأيوني، وهذا هو مصدر الشفق القطبي[ر] والعواصف الفرعية [ر. العاصفة المغنطيسية والفجر القطبي] وما إلى ذلك.
وهناك مناطق أخرى خاصة من الغلاف المغنطيسي أُثبت وجودها هي أحزمة فان آلن Van Allen الإشعاعية منذ عام 1985، والأحدث منها في عام 1966 هو حد الغلاف البلازمي، وهو منطقة التناقص السريع نحو الخارج في الكثافة الإلكترونية للبلازما المكونة للغلاف المغنطيسي، إذ تتناقص قيمة هذه الكثافة بسرعة من 100 إلكترون في السنتمتر المكعب إلى نحو إلكترون واحد في السنتمتر المكعب على بعد ثلاثة أو أربعة أضعاف نصف قطر الأرض، وهو يشكل عند هذا البعد حداً للغلاف البلازمي المتكون من البلازما التي تبقى مرتبطة بالأرض وتدور بدورانها.
حالة الغلاف المغنطيسي التحريكية
قد يحدث للغلاف المغنطيسي:
ـ تعديل في مواضع حدوده المختلفة، وتغيير في مناطقه الداخلية.
ـ تقلّبات وتراوحات أسرع، ترتبط غالباً بحالات عدم استقرار، وتصيب في الوقت نفسه حقله المغنطيسي وبلازماه.
وهناك مشكلة مهمة هي أساليب انتقال الطاقة بين الإشعاعات الشمسية والغلاف المغنطيسي، ثم بين الغلاف المغنطيسي وسطح الأرض، مروراً بالغلاف الأيوني. وفيما يخص النوع الأول من هذه التبادلات يبدو أن الغمد المغنطيسي، وهو منطقة الدوّامات شبه الدائمة الواقعة أمام الحد الخارجي للغلاف المغنطيسي النهاري، يؤدي فيها دوراً متميزاً خاصاً. ومما تجدر ملاحظته أن آليات الانتقال ليست مباشرة دائماً، إذ يبدو أن تخزيناً للطاقة وللبلازما يحدث داخل مختلف مناطق الغلاف المغنطيسي.
يُذكر في هذا الشأن أن الحقل المغنطيسي قادر على «احتباس» أو أسر جسيمات مشحونة يجبرها على أن تدور حول خط الحقل، وأن تنسحب على طوله، فيصبح مسارها لولبياً حول خط الحقل، وتصغر خطوة اللولب مع ازدياد شدة الحقل، أي الاقتراب من الأرض، حيث يؤول المسار إلى دائرة وحسب، ثم ترتد الجسيمات المشحونة على نصف الكرة الأرضية في الاتجاه المعاكس، لتعاود الأسر بخط حقل والاقتراب من جديد من نصف الكرة الأرضية الثاني، وهكذا تنعكس الجسيمات ذهاباً وإياباً بين نصفي الكرة الأرضية، وكأنها في «قارورة مغنطيسية» أو مصيدة تنعكس على التناوب بين مقطعين قائمين فيها. وهكذا يمكن أن يُفسّر مثلاً تراكيز البروتونات والنترونات وتجمُّعها في مناطق أحزمة فان آلن الإشعاعية[ر]. ويمكن لاضطرابات عابرة عَرَضية في الحقل أن تتيح فك أسر الجسيمات وتحريرها من المصيدة هذه، مما يشكل عاصفة مغنطيسية أو شفقاً قطبياً.
ومن المظاهر التي يتواتر حدوثها في أثناء الحالة التحريكية للغلاف المغنطيسي (حتى في الحالة التي يعدّ الغلاف فيها «هادئاً» على الإجمال) «النبضات المغنطيسية» التي يُشاهد عدد كبير من أنماطها على سطح الأرض، غير أن السواتل بدأت تسجلها، في مواقعها مما يؤكد أن مصدرها الرئيس هو الغلاف المغنطيسي، علماً بأن الغلاف الأيوني يمكن أن يتدخل بوصفه «مرشِّحاً» فاعلاً أو منفعلاً.
وتشكل دراسة هذه النبضات إحدى الطرائق المستخدمة لفهم سلوك الغلاف المغنطيسي، من أجل تحديد مختلف «تجاويفه التجاوبية» وانزياحات «جدرانها»، ومن أجل متابعة طرائق إثارته بالإشعاعات الشمسية.
باختصار؛ إن الغلاف المغنطيسي يتحكم، بسبب موضعه الحدودي الذي يشغله، بالاشتراك مع الغلاف الجوي المعتدل والغلاف الأيوني، في جزء كبير من علاقات الشمس ـ الأرض. وتقدّم دراسته فائدة مباشرة لأنشطة أرضية مهمّة كالإرسال الراديوي والملاحة الفضائية والأرصاد الجوية العامة… الخ، وله فوق ذلك فائدة خاصة فيما هو جديد في النظام الفيزيائي «والمختبر» الفضائي. ومن التوجهات الجديدة تبيان الدور الذي يمكن أن تؤديه الحقول الكهربائية أيضاً، بعد الحقول المغنطيسية، في مثل هذا النظام.
أنطون مارين
Magnetosphere - Magnétosphère
الغلاف المغنطيسي
الغلاف المغنطيسي magnetosphère منطقة فضائية تحيط بالكرة الأرضية، وتقع بعد الغلاف الأيوني، بدءاً من 800 حتى 1000 كيلومتر، وتمتد إلى الحدود النهائية الفاصلة بين الفضاء الأرضي والفضاء ما بين الكواكب. تملأ الغلاف المغنطيسي بلازما ممدَّدة جداً، تتكون في أسفله من إلكترونات ونوى الهليوم الثقيلة، وتكاد تكون في قسمه العلوي مفككة كلياً إلى إلكترونات وبروتونات (نوى الهدروجين الخفيفة)، ويتحكم فيها الحقل المغنطيسي الأرضي تحكّماً وثيقاً. وعليه يجب عدّ الناقلية الكهربائية لهذه البلازما شبه لانهائية، مما يكسبها سلوكاً مغنطيسياً تحريكياً يجعلها تسمح لموجات آلفين Alfvén بالانتشار فيها بسرعات تراوح بين 30 و80 كيلومتراً/ثانية، وتضطر جسيماتها إلى الارتباط بخطوط الحقل (خطوط القوة) المغنطيسي وكأنها «مسمَّرة» بها. وهذه البلازما «باردة»، أي كثافة طاقتها الحركية (الترموديناميكية) ضعيفة ومنخفضة، على خلاف البلازما «الحارة» المتوافرة في الريح الشمسية، التي هي تدفق جسيمات مستمر من الشمس،سرعاتها عالية جداً تراوح بين 300 و800 كيلومتر/ثانية.
حدود الغلاف المغنطيسي
لم يعد مقبولاً ـ كما كان يُعتقد في السابق ـ أن يكون هذا الحقل ممتداً إلى اللانهاية، فإن ذلك لم يكن صحيحاً إلا بقدر صحة الاعتقاد بأن الفضاء بين الكواكب هو فضاء «خالٍ» في حالته العادية. إن إثبات الوجود الدائم للريح الشمسية، نحو عام 1950 من قِبَل الفيزيائي الفلكي لودفيغ فرانس بيندكت بيرمان Ludwig F.B. Biermann، أدى إلى قبول الوجود الدائم عام 1958 مع أوجين باركر Eugène N. Parker، «لتجويف» يحتفظ به الحقل المغنطيسي الأرضي، وكأنه محفور في البلازما التي تنقلها الريح الشمسية. وجدران هذا التجويف (الحد الخارجي للغلاف المغنطيسي) هي مقر التآثر (التفاعل المتبادل) الدائم بين هذه البلازما الشمسية والحقل المغنطيسي الأرضي؛ إذ يجبر هذا الحقل جسيمات البلازما على الالتفاف حول خطوط حقله المحيطية الخارجية، ولكن هذه الخطوط الخارجية، ومن ثمَّ معها خطوط الحقل الداخلية الأخرى جميعها، تبقى بقوة ذلك «محصورة» داخل هذا التجويف المتولِّد على هذا النحو.
حالة الغلاف المغنطيسي السكونية (أو «المستقرة») وبنيته الأساسية
الحدّ الخارجي للغلاف المغنطيسي (السطح الحدودي) يعبرّ عن التوازن الحاصل بين الضغوط على وجهيه وفق المعادلة:
وفي هذه العلاقة تعبر الحدود ρv2 (حيث يمثل ρ الكتلة الحجمية، وv سرعة الهيجان الحراري أو الانجرار) عن ضغوط (أو كثافات طاقة) مصدرها حركي أو حراري، بينما تعبر الحدود kB2 (حيث يمثل B التحريض أو الحقل المغنطيسي) عن ضغوط (أو كثافات طاقة) مصدرها مغنطيسي، وترمز القرينتان e وi إلى الوسطين الخارجي والداخلي على التوالي، أما k فهو معامل يتوقف على الواحدات المستخدمة. وإذا لم يؤخذ في الحسبان إلا الحدّ الأهم في طرفي المعادلة ـ الضغط الحركي الذي تمارسه البلازما الشمسية من الخارج، والضغط المغنطيسي الذي يمارسه الحقل المغنطيسي الأرضي من الداخل ـ تؤول العلاقة السابقة إلى الشكل المبسط:
الذي يعين الحدّ الخارجي للغلاف المغنطيسي. وينطبق هذا التفكير على جانب الشمس (أو جانب النهار)، فيشكل شبه نصف كرة كائنة على بعد نحو خمسة أضعاف قطر الأرض. أما في الجانب المضاد للشمس (أو جانب الليل) فالظاهرة في الواقع أكثر تعقيداً، إذ تنضاف إلى الأفعال السابقة انجرارات (باللزوجة المغنطيسية أو بالدوامات الخ…) تمت معرفتها بفضل قياسات ساتلية: استطالة كبيرة في الغلاف المغنطيسي الليلي، التي ربما تمتد إلى مئات عدة من قطر الأرض، أي إلى أبعد بكثير من المدار القمري الذي يمتد إلى 30 مرة من قطر الأرض، وهذا الذي يشكل الذيل المغنطيسي «المغلق» أو «المفتوح»، حسبما يُفترض أن خطوط الحقل تنغلق على ذاتها (الشكل 1ـ ب) أو أنها تذهب على العكس لتلتحم بخطوط الحقل المغنطيسي الضعيف الذي يُعلم الآن بوجوده في الفضاء بين الكواكب والذي تبلغ شدته 5γ تقريباً (γ = غاما = 10-5 غاوس).
شكل الحقل المغنطيسي
الشكل (1) التطورات التي تعاقبت على تصور "حدود" الحقل المعنطيسي الأرضي أ- حقل معزول في الفضاء (الفرضية القديمة) ب- الحصار كامل (غلاف معنطيسي مغلق) متوقع فقط بتأثير ريح شمسية نشيطة جداً وعارضة. ج- التمثيل الإجمالي الراهن "لجغرافية" الحقل |
1ـ وجود «منطقة حيادية»، هي منطقة مسطَّحة (بضع مئات من الكيلومترات) في اتجاه الجنوب ـ شمالي، تنسحب على طولها حقول مغنطيسية متوازية ومتعاكسة في الاتجاه، تحيط بحقول غير مستقرة، ضعيفة أو معدومة، تصادفها السواتل في مركز المنطقة.
2ـ الاحتفاظ بحقول مغنطيسية ذات شدات كبيرة نسبياً (من20 إلى 40 «غاما») تبقى موجودة داخل جسم الذيل ذاته، وإلى مسافات بعيدة تصل إلى عشرات بل مئات قطر الأرض.
الحدّ الخارجي للغلاف المغنطيسي
لقد ثبت وجود الحدّ الخارجي للغلاف المغنطيسي بجلاء باستخدام المقاييس المغنطيسية المحمولة على السواتل أو المسابر الفضائية، فَوُجِدَ أن الحقل المغنطيسي الذي تقيسه هذه الأجهزة يتغير بانتظام داخل الغلاف المغنطيسي، وفجأة بعد مسافة معينة تبدأ فيه التغيرات العشوائية مع هبوط في الشدة. ويمكن فهم تشكل هذا الحدّ الواضح في جانب الشمس على النحو الآتي: لنفترض أن مستوياً ناقلاً ضخماً يقترب من الأرض، وعندما يقطع هذا المستوى خطوط حقل المجال المغنطيسي الأرضي تتولد فيه ـ حسب قوانين الكهرمغنطيسية ـ تيارات تحريضية تخضع لقوى لابلاس تعوق تغير حركة هذا المستوي، وتكون شدة هذه القوى عظمى في جوار المستقيم أرض ـ شمس، فإذا كان هذا المستوي قابلاً للتشوه، يتغير شكله، فيتحدب عن هذا المستقيم أرض ـ شمس، ويؤدي إلى الشكل (2). وليس هذا المستوي الافتراضي سوى السطح الجبهي للريح الشمسية المؤلَّفة من الجسيمات المشحونة الصادرة عن الشمس.
الشكل (2) المنظر العام لخطوط الحقل المعنطيسي الأرضي |
لما كانت سرعة الريح الشمسية عالية جداً، من رتبة 300 إلى 800 كيلومتر/ثانية، وهي أعلى بنحو عشر مرات من سرعة أمواج آلفين؛ فإن هذه الأمواج تؤدي في هذا الوسط المتأين دور الموجات الصوتية المنتشرة في الهواء الذي يتحرك فيه جسم بسرعات فوق صوتية فتنشأ حادثة جدار الصوت بقوة موجة الصدم، وهنا تقوم الريح الشمسية مقام المتحرك بسرعات «فوق صوتية» بالنسبة إلى موجات آلفين، مما يؤدي إلى تشكل موجة الصدم أمام الحدّ الخارجي للغلاف المغنطيسي على مدى يبلغ عدة مرات من قطر الأرض، وتسمى المنطقة المحصورة بين موجة الصدم والحدّ الخارجي للغلاف المغنطيسي بالغمد المغنطيسي، وتكون مملوءة بالبلازما القادمة من الريح الشمسية.
إن عدم الاستقرار الذي يعزى إلى الحقول المتوازية والمتعاكسة في الاتجاه التي تفصل بينها ثخانات صغيرة من البلازما، قد دعا إلى التفكير بإمكان عودة الاتصال بين خطوط الحقل المتقابلة، وعندئذ تتساقط الطاقة المتحررة بشكل موجات مغنطيسية تحريكية و«انهيارات» من البلازما، على المناطق المنخفضة من الغلافين المغنطيسي والأيوني، وهذا هو مصدر الشفق القطبي[ر] والعواصف الفرعية [ر. العاصفة المغنطيسية والفجر القطبي] وما إلى ذلك.
وهناك مناطق أخرى خاصة من الغلاف المغنطيسي أُثبت وجودها هي أحزمة فان آلن Van Allen الإشعاعية منذ عام 1985، والأحدث منها في عام 1966 هو حد الغلاف البلازمي، وهو منطقة التناقص السريع نحو الخارج في الكثافة الإلكترونية للبلازما المكونة للغلاف المغنطيسي، إذ تتناقص قيمة هذه الكثافة بسرعة من 100 إلكترون في السنتمتر المكعب إلى نحو إلكترون واحد في السنتمتر المكعب على بعد ثلاثة أو أربعة أضعاف نصف قطر الأرض، وهو يشكل عند هذا البعد حداً للغلاف البلازمي المتكون من البلازما التي تبقى مرتبطة بالأرض وتدور بدورانها.
حالة الغلاف المغنطيسي التحريكية
قد يحدث للغلاف المغنطيسي:
ـ تعديل في مواضع حدوده المختلفة، وتغيير في مناطقه الداخلية.
ـ تقلّبات وتراوحات أسرع، ترتبط غالباً بحالات عدم استقرار، وتصيب في الوقت نفسه حقله المغنطيسي وبلازماه.
وهناك مشكلة مهمة هي أساليب انتقال الطاقة بين الإشعاعات الشمسية والغلاف المغنطيسي، ثم بين الغلاف المغنطيسي وسطح الأرض، مروراً بالغلاف الأيوني. وفيما يخص النوع الأول من هذه التبادلات يبدو أن الغمد المغنطيسي، وهو منطقة الدوّامات شبه الدائمة الواقعة أمام الحد الخارجي للغلاف المغنطيسي النهاري، يؤدي فيها دوراً متميزاً خاصاً. ومما تجدر ملاحظته أن آليات الانتقال ليست مباشرة دائماً، إذ يبدو أن تخزيناً للطاقة وللبلازما يحدث داخل مختلف مناطق الغلاف المغنطيسي.
يُذكر في هذا الشأن أن الحقل المغنطيسي قادر على «احتباس» أو أسر جسيمات مشحونة يجبرها على أن تدور حول خط الحقل، وأن تنسحب على طوله، فيصبح مسارها لولبياً حول خط الحقل، وتصغر خطوة اللولب مع ازدياد شدة الحقل، أي الاقتراب من الأرض، حيث يؤول المسار إلى دائرة وحسب، ثم ترتد الجسيمات المشحونة على نصف الكرة الأرضية في الاتجاه المعاكس، لتعاود الأسر بخط حقل والاقتراب من جديد من نصف الكرة الأرضية الثاني، وهكذا تنعكس الجسيمات ذهاباً وإياباً بين نصفي الكرة الأرضية، وكأنها في «قارورة مغنطيسية» أو مصيدة تنعكس على التناوب بين مقطعين قائمين فيها. وهكذا يمكن أن يُفسّر مثلاً تراكيز البروتونات والنترونات وتجمُّعها في مناطق أحزمة فان آلن الإشعاعية[ر]. ويمكن لاضطرابات عابرة عَرَضية في الحقل أن تتيح فك أسر الجسيمات وتحريرها من المصيدة هذه، مما يشكل عاصفة مغنطيسية أو شفقاً قطبياً.
ومن المظاهر التي يتواتر حدوثها في أثناء الحالة التحريكية للغلاف المغنطيسي (حتى في الحالة التي يعدّ الغلاف فيها «هادئاً» على الإجمال) «النبضات المغنطيسية» التي يُشاهد عدد كبير من أنماطها على سطح الأرض، غير أن السواتل بدأت تسجلها، في مواقعها مما يؤكد أن مصدرها الرئيس هو الغلاف المغنطيسي، علماً بأن الغلاف الأيوني يمكن أن يتدخل بوصفه «مرشِّحاً» فاعلاً أو منفعلاً.
وتشكل دراسة هذه النبضات إحدى الطرائق المستخدمة لفهم سلوك الغلاف المغنطيسي، من أجل تحديد مختلف «تجاويفه التجاوبية» وانزياحات «جدرانها»، ومن أجل متابعة طرائق إثارته بالإشعاعات الشمسية.
باختصار؛ إن الغلاف المغنطيسي يتحكم، بسبب موضعه الحدودي الذي يشغله، بالاشتراك مع الغلاف الجوي المعتدل والغلاف الأيوني، في جزء كبير من علاقات الشمس ـ الأرض. وتقدّم دراسته فائدة مباشرة لأنشطة أرضية مهمّة كالإرسال الراديوي والملاحة الفضائية والأرصاد الجوية العامة… الخ، وله فوق ذلك فائدة خاصة فيما هو جديد في النظام الفيزيائي «والمختبر» الفضائي. ومن التوجهات الجديدة تبيان الدور الذي يمكن أن تؤديه الحقول الكهربائية أيضاً، بعد الحقول المغنطيسية، في مثل هذا النظام.
أنطون مارين